Rhodeus Watchdog Timer Application Note

January 19, 2010

1.1 Watchdog Timer Interface
The watchdog is a timer designed to reset the CPU or generate an interrupt if the system
comes to a standstill for any unknown reason. This is useful in applications where the single

board computer will be used in an unmanned or standalone situation.

The HIiCORE-i6413DVL has a build-in watchdog timer. The super /O chip, WINBOND®
W83627HF, implements it.

The watchdog timer contains a 1-second/minute resolution down counter. The down counter
can be programmed within the range from 1 to 255 seconds/minutes. Writing any new
non-zero value to the down counter will cause the watchdog timer to reload and start to count
down the new value. As the counter reaches zero, the system will be reset or an interrupt

generated, which is determined by the time-out event configuration.

1.2 Configuring the watchdog timer
The system accesses the super 1/0O chip through Intel® LPC (Low Pin Count) interface. A fixed

I/O ranged 2E~2Fh supports index access for super 1/0O configures.

The 1/O chip, W83627HF uses compatible PnP protocol to access configuration registers for
setting up variable configurations. In W83627HF, there are eleven logic devices. Each logic
device has its own configuration registers (above CR30). Host can access those registers by
writing an appropriate logic device number into device select register CR7. Watchdog timer

shares the same logic number 8 with GPIO port 2.

To program watchdog timer or other W83627HF configuration registers, the following

configuration sequence must be followed:

(1) Enter the extended function mode
To place the chip into the extended function mode, two successive writes of 0x87 must be

applied to Extended Function Enable Registers (EFERSs, i.e. Ox2E).

The following example is encoded with Turbo C 2.0. Symbol Superio_Config_Port is the
address of EFER and must be predefined as a constant Ox2E.

/*‘k‘k**‘k‘k***‘k**

* Enter Logic Device Program Mode
**************‘k***‘k****‘k**********************‘k************/

int Superio Enter Config(void)

{
outp (Superio Config Port, 0x87);
outp (Superio Config Port, 0x87);
return 0;

Configure the configuration registers

The chip selects the logical device and activates the desired logical devices through Extended
Function Index Register (EFIR) and Extended Function Data Register (EFDR). EFIR is located
at the same address as EFER (0x2E), and EFDR is located at address (EFIR+1).

#define NEWIODELAY () asm OUT OEBh, AL /* delay for I/0 access */

int Superio Set Reg(int ReglInx, int ReGEal)
{
outp (Superio Config Port, ReglInx);
NEWIODELAY () ;
outp (Superio Config Port+1l, ReGEal);
NEWIODELAY () ;
return 0;

}

int Superio Get Reg(int RegInx)

{
int ReGEal;
outp (Superio Config Port, ReglInx);
NEWIODELAY () ;
ReGEal = inp(Superio Config Port+l);
NEWIODELAY () ;
return ReGEal;

First, write the device select register number (0x07) to the EFIR and then write the number of
the desired logical device (0x08 for watchdog timer/GPIO port 2) to the EFDR. If accessing the
Chip (Global) Control Registers, this step is not required.

Invoking following routine performs a logic device selection for watchdog. The entry parameter
LgcDevNum is predefined as Ox8.

int Set Logic Device (int LgcDevNum)

{
Superio Set Reg(0x7, LgcDevNum); /* LgcDevNum=8 for watchdog */
return 0;

Secondly, write the address of the desired configuration register within the logical device to the
EFIR and then write (or read) the desired configuration register through EFDR.
The detail of watchdog configuration register programming will be described in the next

paragraph.

Exit the extended function mode.

To exit the extended function mode, one write of OXAA to EFER is required. Once the chip
exits the extended function mode, it is in the normal running mode and is ready to enter the

configuration mode.

/******************************k*k*****************************

* Exit Logic Device Program Mode
*************************~k****~k*****************************/

int Superio Exit Config(void)

{
outp (Superio Config Port, Oxaa);
return 0;

1.3 The detail of watchdog programming
The Watchdog timer output pin, WDTO shares the same physical pin with GP1024. The status
of GPIO24 configuration registers must be programmed to a known value whatever the

application configures the watchdog time-out event as system reset or interrupt.

(2) Configure watchdog time-out event

The watchdog can be configured as system reset output or generate an interrupt if the system
comes to a standstill for any unknown reason. If it is set as system interrupt, the following lines,

predefinitions must be implemented.

#define WDTIRQMod
/* Select time-out event IRQ number (0 to 15, 2 for SMI) */
#define IRQSource 5/*eg. Select Watchdog interrupt connect to IRQ5*/

The counter resolution of the watchdog timer should be predefined too. WDTCntMod=0 is for

1-sec resolution and 1 for 1-min resolution.

#define WDTCntMod 0 /* 0 —— l-second resolution */
/* 1 —-- l-minute resolution */

The following is an example to initialize the watchdog.

int ConfigWDT (void)

{
int iRetval;

/* Enter super I/0 chip configuration mode */
Superio Enter Config();

/* Select logic device 8, watchdog to configure */
Set_Logic_Device (0x8) ;

/* Configure GPIO24 as output pin */

iRetVal = Superio Get Reg(0xf0);

iRetvVal &= ~0x10; /* clear bit4, GPIO24 as output */
Superio Set Reg(0xf0, iRetVal);

/* Configure GPIO24 output LOW level */

iRetVal = Superio Get Reg(0xfl);

iRetVal &= ~0x10; /* clear bit4, GPI024 output 0 */
Superio Set Reg(0xfl, iRetVal);

/* Configure GPIO24 output non-inversion */
iRetVal = Superio Get Reg(0xf2);

iRetVal &= ~0x10; /* clear bit4, GPI024 non-inversion

Superio_Set Reg(0xf2, iRetVal);
#ifdef WDTIRQMod

/* Select GPIO/WDTO pin as GPIO */
iRetVal = Superio Get Reg (0x2b);

iRetVal |= 0x10; /* Set bit4,Select GPIO/WDTO pin as

Superio Set Reg(0x2b, iRetVal);

/* Note: Application should provide an interrupt service
/* Select time-out event IRQ number (0 to 15, 2 for SMI)

Superio_Set Reg(0xf7, IRQSource);
#else

/* Select GPIO/WDTO pin as WDTO */
iRetVal = Superio Get Reg(0x2b);

iRetVal &= ~0x10; /* Clear bit4, Select GPIO/WDTO pin

Superio_Set Reg(0x2b, iRetVal);
#endif

/* Select watchdog timer count mode (sec/min) */
iRetVal = Superio Get Reg(0xf5);

iRetVal &= ~0x8; /* Count mode config bit */
if (WDTCntMod)
iRetVal |= 0x8;

Superio_Set Reg(0xf5, iRetVal);

/* Set watchdog time-out value, disabled */
Superio Set Reg(0xf6, 0);

/* Exit super I/O chip configuration mode */
Superio Exit Config();

return 0;

*/

GPIO */

*/
*/

as WDTO */

Enable/Refresh the watchdog timer

The following codes show how to refresh the watchdog timer. It must be invoked at least once
every cycle in application. The entry parameter iTimOutVal is ranged Ox1 to Oxff. The

watchdog timer should be initialized before it is enabled or refreshed.

int RefWDT (int iTimOutVal)
{

/* Enter super I/O chip configuration mode */
Superio Enter Config();

/* Select logic device 8 to configure */
Set Logic Device (0x8);

/* Set watchdog time-out value, disabled */
Superio Set Reg(0xf6, iTimOutVal);

/* Exit super I/0 chip configuration mode */
Superio Exit Config();

return 0;

Disable the watchdog timer
Invoke Re fWDT () with parameter iTimOutVal=0 will disable the watchdog timer.

RefWDT (0x0) ;

How to check watchdog timer status

If the watchdog is configured as a system time-out reset. Bypass the section.
If the watchdog time-out event is configured as a system interrupt, the application program
should handle the preset IRQ and provide an interrupt service routine. Following routine shows

how to check if the generated interrupt is required from watchdog.

int ChkWdtIrg(void)

{
int iRetVal;

/* Enter super I/O chip configuration mode */
Superio Enter Config();

/* Select logic device 8 to configure */
Set Logic Device (0x8);

/* Check watchdog timer status */
iRetVal = Superio Get Reg (0xf7);
iRetVal &= 0x10; /* Check bit4, 1 - Time-out event occurred */

/* Exit super I/0 chip configuration mode */
Superio Exit Config();

if (iRetVal)
return 1; /* Watchdog time-out occurred */
return 0; /* Watchdog timer counting */

